ar X iv : m at h / 06 08 29 3 v 1 [ m at h . A P ] 1 1 A ug 2 00 6 GLOBAL BEHAVIOUR OF NONLINEAR DISPERSIVE AND WAVE EQUATIONS

نویسنده

  • TERENCE TAO
چکیده

We survey recent advances in the analysis of the large data global (and asymptotic) behaviour of nonlinear dispersive equations such as the non-linear wave (NLW), nonlinear Schrödinger (NLS), wave maps (WM), Schrödinger maps (SM), generalised Korteweg-de Vries (gKdV), Maxwell-Klein-Gordon (MKG), and Yang-Mills (YM) equations. The classification of the nonlin-earity as subcritical (weaker than the linear dispersion at high frequencies), critical (comparable to the linear dispersion at all frequencies), or supercriti-cal (stronger than the linear dispersion at high frequencies) is fundamental to this analysis, and much of the recent progress has pivoted on the case when there is a critical conservation law. We discuss how one synthesises a satisfactory critical (scale-invariant) global theory, starting the basic building blocks of perturbative analysis, conservation laws, and monotonicity formulae, but also incorporating more advanced (and recent) tools such as gauge transforms, concentration-compactness, and induction on energy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : q ua nt - p h / 06 03 08 9 v 1 10 M ar 2 00 6 Propagation of temporal entanglement

The equations that govern the temporal evolution of two photons in the Schrödinger picture are derived, taking into account the effects of loss, group-velocity dispersion, temporal phase modulation, linear coupling among different optical modes, and four-wave mixing. Inspired by the formalism, we propose the concept of quantum temporal imaging, which uses dispersive elements and temporal phase ...

متن کامل

m at h . A P ] 2 1 A ug 2 00 0 MULTILINEAR WEIGHTED CONVOLUTION OF L 2 FUNCTIONS , AND APPLICATIONS TO NON - LINEAR DISPERSIVE EQUATIONS

The X s,b spaces, as used by Beals, Bourgain, Kenig-Ponce-Vega, Klainerman-Machedon and others, are fundamental tools to study the low-regularity behaviour of non-linear dispersive equations. It is of particular interest to obtain bilinear or multilinear estimates involving these spaces. By Plancherel's theorem and duality, these estimates reduce to estimating a weighted convolution integral in...

متن کامل

ar X iv : 0 71 1 . 32 62 v 1 [ m at h . A P ] 2 1 N ov 2 00 7 HARMONIC ANALYSIS RELATED TO SCHRÖDINGER OPERATORS

In this article we give an overview on some recent development of Littlewood-Paley theory for Schrödinger operators. We extend the LittlewoodPaley theory for special potentials considered in the authors’ previous work. We elaborate our approach by considering potential in C∞ 0 or Schwartz class in one dimension. In particular the low energy estimates are treated by establishing some new and ref...

متن کامل

ar X iv : 0 90 6 . 33 84 v 1 [ m at h . A P ] 1 8 Ju n 20 09 ENERGY DISPERSED LARGE DATA WAVE MAPS IN 2 + 1 DIMENSIONS

In this article we consider large data Wave-Maps from R into a compact Riemannian manifold (M, g), and we prove that regularity and dispersive bounds persist as long as a certain type of bulk (non-dispersive) concentration is absent. This is a companion to our concurrent article [21], which together with the present work establishes a full regularity theory for large data Wave-Maps.

متن کامل

ar X iv : m at h - ph / 0 60 80 03 v 1 1 A ug 2 00 6 HAMILTONIAN STRUCTURE FOR DISPERSIVE AND DISSIPATIVE DYNAMICAL SYSTEMS

We develop a Hamiltonian theory of a time dispersive and dissipative inhomogeneous medium, as described by a linear response equation respecting causality and power dissipation. The Hamiltonian constructed here couples a given system to auxiliary fields in the universal form of a so-called canonical heat bath. After integrating out the heat bath, the original dissipative evolution is exactly re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006